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Abstract
We study the level structure of a Coulombic donor impurity that binds
an electron that is confined within a spherical quantum dot in the GaAs–
Ga1−xAlx As system. Initially, the electron is considered to be moving in
a spherically symmetric rectangular potential well and then the effects of a
hydrogenic donor with effective charge ZD taken at the centre of the well are
considered as a strong perturbation within the effective mass approximation.
The perturbation calculations are carried out using the Jiang approach (Jiang
1987 Phys. Rev. B 35 9287). We calculate the binding energies of the ground
and a few higher excited states for both infinite and finite potential wells as
a function of well width and barrier height. The results are compared with
those obtained by other techniques such as the variational and direct numerical
methods. It is found that the agreement among all these methods is excellent,
and this would open the way for more investigations using our direct and
relatively easy perturbation treatment, especially in more complicated cases in
similar systems.

1. Introduction

In recent years, there has been a considerable amount of work devoted to the study of
semiconductor confined structures due to their applicability in electronics and optoelectronics
devices. Since the electronic movement in nanostructures with a quantum dot is confined in
all three directions, it is expected that there will appear more obvious quantum size effects.
For example, the energy levels will be strongly dependent on the size of such structures. A
very interesting problem in quantum low-dimensional structures is to understand how an atom,
i.e. an impurity, modifies the energy spectrum of the system. It is expected that the binding
energy of the donor atom is increasing continuously as the well size is reduced [2, 3]. The
most representative example of this configuration is the regions of GaAs which act as a well
of conduction electrons separated by regions of GaAs–Ga1−x AlxAs as barriers. The optical
and electronic properties of these zero-dimensional structures have been the subject of both
theoretical [1–9] and experimental [10–13] investigations.
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Up to now, the study of energy levels of donor atoms confined in a quantum well has
been performed mainly by the variational method [14] and numerical methods [15–18]. The
difficulty arising in this problem is in accurately representing the actual state, which is partly
due to the donor atom and partly due to the potential well. Hence, a very flexible trial
function is needed, which accounts for both parts simultaneously. Villalba et al [18] used an
alternative approach called the (1/N) method [19] along with the linear variational technique
with reasonable success. In this work an attempt to use the perturbation method first proposed
by Jiang [1] has been achieved. This approach treats strong perturbation in a very simple and
direct way, in which we avoid the restrictions usually imposed by the traditional Schrödinger
perturbation method. In this way, one can give an accurate account of the Coulombic part due
to the donor atom, which is crucial for determining binding energies. In this paper, we report
an almost exact quantum level structure for confined electron and hydrogenic donor stales in a
spherical quantum dot (SQD).

A closely related problem to our analysis consisting of an off centre donor in a confined
geometry with dielectric mismatch at the boundary has been studied by Ferryra and Proetto [9]
and elaborated by Bolcatto and Proetto [24]. In [9], Ferryra and Pretto express the Hamiltonian
in terms of a scaling parameter R/a∗

0 = λ (R is the dot radius), so that they can treat the strong-
confinement limit (λ → 0) by standard perturbation theory. It will be shown that their results
at the centre of the dot are nearly identical to the present results for 0 < r0 � 1, but expected
to be not valid for r0 > 1.

The dependence of quantum levels and binding energies on the dimensions of the quantum
well is treated extensively in section 2, where the method of calculations is outlined for confined
electron and hydrogenic donor states in an SQD. Explicit formulae for energy perturbation
corrections from the strong perturbation theory are derived. In section 3, the numerical results
are discussed. Section 4 concludes the present method with a short summary and conclusion.

2. Method of calculation

2.1. Perturbation treatment

Consider the Hamiltonian

H = H0 + H ′ (1)

where

H0 = −∇2 + V (r). (2)

Moreover,

H ′ = −2ZD

r
. (3)

In the SQD, V (r) is assumed to be

V (r) =
{

V0 if r � r0

0 if r ≺ r0.
(4)

H ′ is comparable to H0, and therefore the conventional Schrödinger perturbation theory is
not applicable for such strong perturbations. Following Jiang [1], we introduce a function
( f = e−g) and plug it into � = f �, where � is the unperturbed state given by

H0� = E0 � (5)

and the perturbed state satisfies

Hψ = Eψ. (6)
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Substituting ψ = f� into equation (6), and following the Jiang approach, we arrive at

f (h0 + h′)φ = E f φ (7)

where

h0 = H0 − Z 2
D

n′2 (8)

and

h′ = 2 ZD

n′
∂

∂r
− 2 ZD

r

(
1 − 1

n′

)
(9)

where n′ stands for the principal quantum number of the hydrogenic donor atom of effective
charge ZD. Therefore, h′ depends on the quantum number n′ as an example for n′ = 1, the 1s
level, we have

h′
1s = 2 ZD

∂

∂ r
(10)

and for n′ = 2, � = 1, the 2p level, we have

h′
2p = ZD

∂

∂ r
− ZD

r

= ZD

(
∂

∂ r
− 1

r

)
. (11)

The zero-order ψ takes the form

ψ
(0)
n� = N �n� e−ZD r/n′

(12)

and the energy corrected to first order is

En� ≈ E (0)
n� + E (1)

n� (13)

where n = n′ − � as will be explained later and

E (0)
n� =

∫
�∗

n� H0�n� dτ (14)

ε
(1)
n� = − Z 2

D

n′2 +
∫
�
(0)∗
n� h′�(0)

n� dτ . (15)

The second term may be denoted by E (1)
n� , i.e.

E (1)
n� =

∫
ψ∗

n�h
′ψ(0)n� dτ = N2

n�

∫
f 2�∗

n�(h
′�n�) dτ (16)

N−2 =
∫

f 2|�n�|2 dτ. (17)

Using equation (12), we obtain

E (1)
n� = N2

∫
e−2ZDr/n′

�∗
n�h

′�n� dτ

= N2
∫

e−2ZDr/n′
�∗

n�

(
2ZD

n′
∂

∂r
− 2Z D

r

(
1 − 1

n′

))
�n� dτ (18)

N−2 =
∫

e−2ZD r/n′ |�n�|2 dτ. (19)
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Using equations (10) and (11), we get for the 1s level (n′ = 1) and Z D = 1 the following:

E (1)
1s = N2

1s

∫
e−2Zr�∗

1s

(
2
∂�1s

∂r

)
dτ (20)

where

N−2
1s =

∫
e−2r |�1s|2 dτ. (21)

Similarly, for the 2p level (n′ = 2) we get

E (1)
1s = N2

2p

∫
e−r�∗

2p

(
∂

∂ r
− 1

r

)
�2p dτ (22)

where

N−2
2p =

∫
e−r |�2p|2 dτ. (23)

It is evident from a quick look at equations (20)–(23) that the whole procedure depends on the
exact zero-order eigenfunctions �n�. If �n� are not available, a trial function may be used and
the problem can be treated variationally. As Jiang [1] pointed out, the set of functions f1�n�

is not orthogonal despite the fact that the �n� are themselves orthogonal. f2�2s, f2�3s . . . etc,
are not orthogonal to f1 �1s, but f1 �1s is orthogonal to f2 �2 p by the angular parts, namely
Y 0

0 ,Y m
1 (ϑ, ϕ). The above calculation can, of course, be extended to higher order in perturbation

if necessary, but, as will be seen, good accuracy with first order alone may be achieved. We
will apply the theory for 1s and 2p states at the present stage and of 2s and 3s for future work,
since 2s and 3s are more involved and need to be Schmidt orthogonalized on the 1s state before
they can be incorporated in such calculations.

2.2. Calculation of �n�, E (0)
n�

The hydrogenic effective mass theory (EMT) is normally well suited for slowly varying fields
of screened impurities, i.e. it is reliable for weakly bound states or shallow energy levels. In the
case of the GaAs·Ga1−x Alx As superlattice, the gap of GaAs is 1.4 eV, while Ry∗ = 5.3 meV,
which means that the binding energy is well within the applicability of the EMT even if it is
doubled 100 times. The expected enhancement of the binding energy in the cases that will be
considered here does not exceed the above limit, so that the theory is still reliable for the bound
states in the SQD of GaAs·Ga1−x Alx As.

According to the EMT, the Hamiltonian for the donor in the SQD is given by

H = −∇2 − 2ZD

r
+ V (r) (24)

where V (r) is defined by equation (4). The unit of energy is the effective Rydberg R∗ = m∗e4

2h̄2k
,

where k is the dielectric constant of GaAs, m∗ is the electronic effective mass and the distance
is measured by the effective Bahr unit a∗ = h̄2k

m∗e2 . Since the total potential energy is still of
radial symmetry, the solutions of H � = E� are, as usual, defined by two quantum numbers
(n�), but the exact solutions�n� cannot be expressed in closed form in terms of known special
functions except the angular part, which remains unaffected (i.e. Y�m(ϑ, ϕ)).

A number of methods may be used to deal with equation (24) as mentioned earlier, but
we prefer to use the strong perturbation theory to treat the donor part of the potential. The
remaining unperturbed problem simply consists of an electron that is moving in a spherically
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symmetric potential well as defined by equation (4). The solution of H0� = E0� has the
form [21];

�n�(r, ϑ, ϕ) =
{

A j�(kn� r)

Bh(1)� (iαn�r)

}
Y�m(ϑ, ϕ) (25a)

where

kn� =
√

E (0)
n�

αn� =
√

V0 − E (0)
n�

(25b)

and they satisfy

ikn�h
(1)
� (ixn�r0) j�−1(kn�r0)+ αn�h

(1)
�−1(iαn�r0) j�(kn�r0) = 0. (26)

For � � 1 and for � = 0, we have

kn0 + αn0 tan(kn0r0) = 0. (27)

To obtain the zero-order eigenvalues E (0)
n� the above transcendental relations have to be

solved numerically. If V0 → ∞, then these solutions are simplified to�n� = Y�m j�(kn�r), r �
r0 and E (0)

n� = (xn�/r0)
2, where xn� is the nth root of the �th-order spherical Bessel’s function,

where n = n′ − �. The full zero-order eigenfunctions are then given by

�n�(r, ϑ, ϕ) = AY�m(ϑ, ϕ)

⎧⎨
⎩

j�(kn�r) r � r0

j�(kn�r0)

h(1)� (iαn�r0)
h(1)� (iαn�r) r > r0

(28)

where

|A|−2 =
∫ r0

0
j 2
� (kn�r)r

2 dr +
∣∣∣∣∣ j�(kn�r0)

h(1)� (iαn�r0)

∣∣∣∣∣
2 ∫ ∞

r0

|h(1)� (iαn�r)|2 r 2 dr . (29)

2.3. First-order energy corrections

(i) For V0 → ∞.
Considering the impurity atom as the source of the perturbing term in an infinite potential

well, the first-order energy corrections can be calculated by using relations (20) and (21) for
the 1s state and the relations (22) and (23) for the 2p-like state, as follows:

E (1)
1s = 2N2

1s

X2
10 j 2

1 (x10)

∫ X10

0
e
−

(
2r0
X10

)
ρ

j0(ρ)
∂ j0
∂ρ
ρ2 dρ

= − 2N2
1s

X2
10 j 2

1 (x10)

∫ X10

0
e
−

(
2r0
X10

)
ρ

j0(ρ) j1(ρ)
2 dρ (30)

and

N−2
1s = 2r0

X3
10 j 2

1 (x10)

∫ X10

0
e
−

(
2r0
X10

)
ρ

j 2
0 (ρ)ρ

2 dρ (31)

and

E (1)
2p = N2

2p

2

X2
11 j 2

2 (x11)

∫ X11

0
e
−

(
r0

X11

)
ρ

j1(ρ)

(
∂

∂ρ
− 1

ρ

)
j1(ρ)ρ

2 dρ

= 2N2
2p

X2
11 j 2

2 (x11)

∫ X11

0
e
−

(
r0

X11

)
ρ

j1(ρ)

(
j0(ρ)− 3

ρ
j1(ρ)

)
ρ2 dρ (32)

5



J. Phys.: Condens. Matter 19 (2007) 036204 H A Kassim

where

N−2
2p = 2r0

X3
11 j 2

2 (x11)

∫ X11

0
e
−

(
r0

X11

)
p

j 2
1 (ρ)ρ

2 dρ. (33)

(ii) For finite V0.
In the case where n′ = 1 and � = 0 (i.e. the 1s state) and using equations (20) and (21) we

obtain the following:

E (1)
1s = 2N2

1s

[∫ r0

0
e−2r j0(k10r)

∂ j0(k10r)

∂r
r 2 dr +

∣∣∣∣∣ j0(k10r)

h(1)1 (iα10r0)

∣∣∣∣∣
2

×
∫ ∞

r0

e−2r h∗(1)
0 (iα10r)

∂h(1)0 (iα10r)

∂r
r 2 dr

]

= 2N2
1s

{
1

k2
10

∫ k10r0

0
e−2( ρ

k10
) j1(ρ) j0(ρ)ρ

2 dρ + 1

α2
10

∣∣∣∣∣ j0(k10r)

h(1)1 (iα10r0)

∣∣∣∣∣
2

×
∫ ∞

α10r0

e
−2

(
σ
σ10

)
ih(1)∗0 (iσ)h(1)1 (iσ)σ 2 dσ

}
(34)

where

N−2
1s = 1

k3
10

∫ k10r0

0
e
−2

(
ρ

α10

)
j 2
0 (ρ)ρ

2 dρ + 1

α2
10

∣∣∣∣∣ j0(k10r)

h(1)1 (iα10r0)

∣∣∣∣∣
2

×
∫ ∞

α10r0

e
−2

(
σ
σ10

)
|h(1)∗0 (iσ)|2σ 2 dσ. (35)

Following similar steps and using equation (28) in equations (22) and (23) for the 2p level, we
obtain

E (1)
2p = N2

2p

{∫ r0

0
e−r j1(k11r)

(
∂

∂r
− 1

r

)
j1(k11r)r 2 dr +

∣∣∣∣∣ j0(k10r)

h(1)1 (iα10r0)

∣∣∣∣∣
2

×
∫ ∞

α10r0

e−r h(1)∗1 (iα11r)

(
∂

∂r
− 1

r

)
h(1)1 (iα11r)r 2 dr

}
. (36)

Using the relation

∂ j1(k11r)

∂r
= k11 j0(k11r)− 2

r
j (1)1 (k11r)

∂h(1)1 (iα11r)

∂r
= iα11h(1)0 (iα11r)− 2

r
h(1)1 (iα11r)

(37)

in equation (36) we get

E (1)
2p = N2

2p

{
1

k2
11

∫ k11r0

0
e−ρ/k11 j1(ρ)

[
j0(ρ)− 3

ρ
j1(ρ)

]
ρ2 dρ + 1

α2
11

∣∣∣∣∣ j1(k10r)

h(1)1 (iα10r0)

∣∣∣∣∣
2

×
∫ ∞

α11r0

e−σ/σ11

[
ih(1)0 (iσ)− 3

σ
h(1)1 (iσ)

]
h(1)∗1 (iσ)σ 2 dσ

}
(38)

where

N−2
2p = 1

k3
11

∫ k11r0

0
e−ρ/k11 j 2

1 (ρ) ρ
2 dρ + 1

α3
11

∣∣∣∣∣ j0(k10r)

h(1)1 (iα10r0)

∣∣∣∣∣
2 ∫ ∞

α11r0

e−σ/α11 |h(1)1 (iσ)|2σ 2 dσ.

(39)
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Table 1. Energy levels in the SQD of GaAs–Ga1−x Alx As in the absence of a donor atom, for
various values of well width r0 and barrier height V0. Effective atomic units are used (Ry* for
energy and a∗ for distance) (dashes mean no solutions).

E(0)n�

r0 V0 1s 2s 3s 1p

0.8 ∞ 15.422 61.740 138.924 31.542
90 11.967 46.865 88.352 24.350
50 10.990 41.314 — 22.214
30 9.968 29.269 — 19.833

1.6 ∞ 3.856 15.435 34.726 7.886
90 3.389 13.527 30.287 6.929
50 3.246 12.913 28.660 6.632
30 3.092 12.209 26.355 6.305

3.2 ∞ 0.964 3.859 8.682 1.971
90 0.903 3.611 8.121 1.847
50 0.883 3.920 7.936 1.807
30 0.857 3.442 7.721 1.762

To compute the integrals (34), (35), (38) and (39), we have to solve equations (26) and (27)
first to obtain k10, k11, α10, and α11 and then evaluate E (1)

1s and E (1)
2p . The electronic binding

energy in a given state may be taken as the difference in energy between eigenvalues in that
particular state in the absence of the donor atom (ZD = 0) and that in its presence (ZD = 1)

EB(�) = En�(ZD = 0)− En�(ZD = 1). (40)

For the p state for example, we obtain

EB(� = 1) = E1 p(ZD = 0)− E1 p(ZD = 1)

EB(� = 1) = 0.25 − E (1)
2p .

(41)

3. Numerical results

3.1. The zero-order problem (ZD = 0)

A numerical calculation for the GaAs·Ga1−x AlxAs spherical quantum dot of radius r0 ranging
between 0.1a∗ and 4a∗, with V0 from 30 Ry∗ up to 90 Ry∗, has been carried out. In table 1
we have shown some selective values for quick reference. Detailed behaviour of E (0)

n� for full
ranges are shown in figure 1. The levels E (0)

n� are designated by two quantum numbers: n,
indicating the nth root of equation (27) for � = 0 and of equation (26) for � � 1 in order of
increasing magnitude i.e. n = 1, 2, 3, . . . , and �, the usual orbital quantum number. Thus, we
have for example n� 1s, 1p, 1d, 2s, 1f, etc in order of increasing energy. If one retains the
usual principal quantum number of hydrogenic atom n′, which in the present case is related
to n by n′ = n + � then, we have the corresponding notations n′�; 1s, 2p, 3d, 2s, 4f, . . . etc.
When V0 → ∞, E (1)

n� takes the simple form given by E (1)
n� = (xn�/r0)

2, where xn� is the nth
root of the �th order spherical Bessel’s function. The levels of energy are, however, different
between infinite and finite V0. The values of the infinite V0 are becoming higher and higher as r0

decrease as shown in table 2, while the SQD can hold a finite number of bound states governed
by the condition r0 < 0.5π/V 1/2

0 . There is no limit on such a number in the infinite V0 case.
However, the order of E (1)

n� is the same in both cases, but differs from the hydrogenic sequence

7
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Figure 1. (a) Ground E (1s) and excited state E (1p) energy levels of an electron bounded inside a
spherical potential well of width r0 and height V0. (a), (b) denote V0 = 90 Ry* and (c), (d) denote
V0 = 30 Ry*, with well width in the range of 0–1a∗. (b) Energy levels EB (1s) and EB (1p) for
an electron confined within a potential well of width r0 in the range of 1a∗–3.5a∗ for barrier height
V0 = 90 Ry* indicated by (a), (b) and for barrier height V0 = 30 Ry* by (c), (d).

(1s, 2s, 2p, 3s, 3p, 3d, . . . etc) compared with 1s, 1p(2p), 1d(3d), 2s(2s), 1f(4f), 2p(3p) and so
on. We notice also that the level of degeneracy is reduced from n′2 (excluding spin degeneracy)
in the hydrogen case to (2�+ 1) in the SQD case. This means that in the SQD the degeneracy
is governed by the different values of the magnetic quantum number m for a given �, but E (0)

n�
is different for different � values even with the same n value. This difference in degeneracy
in the SQD as compared with the Coulomb field is a distinguishing feature in the SQD, which
might cause new phenomena in this type of GaAs–Ga1−x Alx As structure. In figure 1, we have
plotted 1s and 1p as a function of r0 for V0 = 90 Ry∗ and 30 Ry∗. The differences of energy
levels along these states increase as the value of r0 decreases. It is also shown that there are no
bound states for an SQD with a finite V0 if r0 < 0.5π/V 1/2

0 . But for V0 → ∞, r0 → 0 the
situation resembles that of the δ-function potential problem.

8
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Table 2. Binding energy of the ground state EB (1s) and excited state EB (1p) of a donor in an SQD
versus the well radius r0 for barrier heights V0 = ∞ and V0 = 50 Ry* (blanks mean no solutions).

V0 = ∞ V0 = 50 Ry*

r0 EB (1s) (Ry*) EB (1p) (Ry*) EB (1s) (Ry*) EB (1p) (Ry*)

0.1 48.646 — — —
0.2 24.279 — — —
0.3 16.164 12.281 7.435 —
0.4 12.113 9.190 7.768 4.871
0.5 9.687 7.348 7.063 5.016
0.6 8.074 6.115 6.308 4.700
0.7 6.925 5.235 5.648 4.190
0.8 6.066 4.575 5.100 3.799
1.0 4.470 3.652 4.249 3.160
1.2 4.081 3.317 3.653 2.606
1.4 3.524 2.600 3.211 2.370
1.6 3.111 2.271 2.875 2.087
1.8 2.795 2.016 2.609 1.881
2.0 2.547 1.909 2.400 1.694
2.2 2.346 1.647 2.226 1.510
2.4 2.183 1.509 2.150 1.426
2.6 2.047 1.393 1.964 1322
2.8 1.933 1.293 1.830 1.232
3.0 1.837 1.207 1.776 1.154
3.2 1.754 1.076 1.702 1.085
3.4 1.701 1.037 1.606 0.998

3.2. Binding energies in SQD

To calculate binding energies of the ground state (1s) we have started with equations (34)
and (35), and for the first excited state (1p) we used equations (38) and (39). These results
are further simplified in the appendix, where we reach final analytical results for the integrals
involving h(1)� . Using equation (40), we have evaluated EB (1s) and EB (1p) as a function of
r0. In figure 2 we have shown EB (1s) and EB (1p) of a donor in an SQD for V0 = 90, and
30 Ry*. As r0 decreases, all binding energies increase continuously, being more for the 1s
level, which passes through a maximum at low r0 and then decreases sharply at even lower r0,
in complete agreement with other authors’ results [2, 3]. The major property which these curves
reveal is that the values of binding energies can be much larger than those in the quantum wire
and two dimensional quantum well as r0 is smaller. Figure 2 also shows that as r0 decreases
the binding energy and consequently the confining effects with respect to different states of a
donor in an SQD increase until they reach their maxima. It seems that the confinement effects
are dominant in the allowed range of r0 with much larger binding energies compared with the
two dimensional quantum well and quantum wire. On the other hand, the level sequential order
resembles that of a three-dimensional hydrogen donor if r0 is much larger in value and quantum
confinement due to the SQU becomes weaker to a larger extent.

In table 3, the maximum binding energies for the states 1s, 1p are shown against barrier
height V0. It is clear that the enhancement of the maximum is greater in an SQD, which may
be considered as almost zero dimensional, than in the corresponding quantum wire and two-
dimensional quantum well, as V0 is increased. This can be attributed to the fact that in our case
(SQD) the enhancement of the electron confinement is effected in three dimensions compared
to the one and two dimensions in the above stated cases.

9



J. Phys.: Condens. Matter 19 (2007) 036204 H A Kassim

0.0 0.2 0.4 0.6 0.8 1.0

r0 (a*)

r0 (a*)

E
B
(R
y
*)

a

b
c
d

E
B
(R
y
*) b

a

c

d

12

2

6

10

0

4

8

0.5

1.5

2.5

3.5

4.5

0

1

2

3

4

1.0 1.2 1.4 1.6 1.8 2.0

(a)

(b)

Figure 2. (a) Binding energy of a donor atom in an SQD versus the well radius r0. The curves (a),
(b) represent EB (1s) of the well of V0 = 90, 30 Ry*, and the curves (c), (d) represent EB (1p) for
V0 = 90, 30 Ry*, in the range of (0, a∗) for r0.. (b) The same as in (a) but the r0 range is extended
to 2 a∗.

Table 3. Maximum binding energies for 1s and 1p states versus barrier height (all values are in
Ry* units).

V0 Emax (1s) Emax (1p)

30 6.193 3.840
50 7.768 6.05
90 10.223 6.62

In table 4 we list our results for the range of 0 < r0 < 1 (which defines the strong
confinement region, where the dot dimension is smaller than the effective Bohr radius) along
with the results that are extracted from figures 1 and 2 of [9]. It seems that the agreement

10
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Table 4. Binding energies of EB (1s) and EB (1p) states of a hydrogenic donor centred in an
SQD compared with the corresponding results of the strong confinement limit (V0 → ∞, r0 < 1,
where the dot radius is much smaller than the effective Bohr radius a∗) of [9] indicated by (FP).
Our r0 correspond to λ and the numerical values shown in table are extracted from E (1)c (ri = 0) of
figures 1 and 2 for the case of ε1 = ε2, which maybe applied to GaAs/Alx Ga1−x .

EB (1s) (Ry*) EB (1p) (Ry*)

r0 Present (FP) Present (FP)

0.1 48.646 48.333 — —
0.2 24.279 24.167 — —
0.3 16.164 16.111 12.281 12.381
0.4 12.113 12.083 9.190 9.286
0.5 9.687 9.667 7.348 7.429
0.6 8.074 8.056 6.115 6.191
0.7 6.925 6.905 5.235 5.306
0.8 6.066 6.042 4.575 4.643
1.0 4.470 4.833 3.652 3.714

between the two approaches is complete. This is expected since both approaches; the weak and
strong perturbations, become identical in this region. As r0 (or λ) increases and V0 decreases,
the weak perturbation is no longer valid because λ becomes large (r0 	 1). However, it remains
to extend our calculations for the off-centre case to see how the method works. This will be
treated in a future publication.

4. Summary

We have studied the problem of the SQD by using the strong perturbation method. The source
of perturbation is taken to be due to the presence of the donor atom at the centre of the spherical
dot. To the best of our knowledge, this is the first time this approach has been employed in
such a problem. The zero-order problem simply consists of an electron moving in a spherical
rectangular potential box, and treated by solving appropriate transcendental relations. The
quantum levels and binding energies of the donor in the SQD are calculated to the first order.
Previous experience [1] shows that the first order strong perturbation yields accurate results
for non-degenerate states. The numerical results that we have obtained show a very close
connection between binding energies and barrier height V0, and sphere radius r0 of the SQD.
In comparison to the V0 → 0 case and r0 → 0, the binding energy passes through a maximum
value, indicating optimum confinement effects. On the basis of the numerical values that have
been obtained, one can demonstrate the cross-over from three-dimensional to zero-dimensional
behaviour of the donor states in an SQD as the radius r0 of the SQD is reduced to very small
values.

The binding energy of a hydrogen donor state in the well of GaAs1−x Alx As and its
maximum are strongly dependent on the well extent and barrier height. Also there is a larger
confinement and binding energy of a donor state in an SQD than in a quantum well and
quantum wire. This is clearly demonstrated in the strong confinement limit and is indicated
in [9]. In conclusion, the perturbative approach that has been employed is very useful if the
two Hamiltonian terms are comparable, a case which one encounters in a reduced dimensional
problem such as the one we were dealing with. To extend these calculations, one might attempt
to deal with degenerate excited states and also extend the calculation to higher orders. It is also
of interest to attempt the off-centre case with dielectric mismatch in and out of the spherical
dot in the sprit of [9].

11
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Appendix

Equations (34) and (35) involve the following integrals:

I1 =
∫ ∞

α10r0

e
−

(
σ
α10

)
ih(1)∗0 (iσ)h(1)1 (iσ)σ

2 dσ

I2 =
∫ ∞

α10r0

e
−

(
σ
α10

)
|h(1)0 (iσ)|2σ 2 dσ.

(A.1)

Using the definitions

h∗(1)
0 (iσ) = −e−σ

σ
and ih(1)1 = −

[
1

σ
+ 1

σ 2

]
e−σ (A.2)

we get

ih∗(1)
0 (iσ)h(1)1 (iσ)σ

2 =
(

1 + 1

σ

)
e−2σ (A.3)

|h(1)0 (iσ)|2σ 2 = e−2σ . (A.4)

Substitute (A.3) in (A.1) and (A.4) in (A.2), we obtain

I1 =
∫ ∞

α10r0

(
1 − 1

σ

)
e
−2

(
1+ σ

α10

)
σ

dσ (A.5)

I1 =
∫ ∞

α10r0

e
−2

(
1+ σ

α10

)
σ

dσ. (A.6a)

Using ∫ ∞

ϑ

e−x

x
dx = E1(ϑ) = −γ − lnϑ −

∞∑
n=1

(−1)nϑn

n n! (A.6b)

where γ is the Euler–Mascheroni constant (γ = 0.577 2160) and

1

α2
10

∣∣∣∣ j0(k10r0)

h(1)(iα10r0)

∣∣∣∣
2

= 1

k2
10

sin2(k10r0)e
2α10r0 (A.7)

we get

I1 = α10e−2(α10+1)r0

2(1 + α10)
+ E1(2(1 + α10)r0). (A.8)

Therefore,

E (1)
1s = −2N2

1s

[
1

k2
11

∫ k11r0

0
e−2ρ/k10 j0(ρ) j1(ρ)ρ

2 dρ + α10 sin2(k10r0)

2k10(1 + α10)
e−2r0

+ sin2(k10r0)

2k2
10

e2α10r0 E1(2(1 + α10)r0)

]
(A.9)

N−2
12 = 1

k3
10

∫ k11r0

0
e−ρ/k10 j 2

0 (ρ)(ρ)
2 dρ + sin2(k10r0)

2k2
10(1 + α10)

e−2r0 . (A.10)

The remaining integrals in (A.9) and (A.10) are evaluated numerically.
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Equations (38) and (39) for E (1)
2p and N−2

2p respectively involve the following integrals:

I3 =
∫ ∞

α11r0

e−σ/α11

[
ih(1)0 (iσ)−

3

σ
h(1)1 (iσ)

]
h(1)∗1 (iσ)σ 2 dσ (A.11)

and

I4 =
∫ ∞

α11r0

e−σ/α11 |h(1)1 (iσ)|2σ 2 dσ. (A.12)

Using the definition of h(1)1 (iσ), we get

|h(1)1 (iσ)|2σ 2 =
(

1 + 2

σ
+ 1

σ 2

)
e−2σ (A.13)

h∗(1)
1

{
ih(1)0 (iσ)− 3

σ
h(1)1 (iσ)

}
σ 2 = −

{
1 + 4

σ
+ 6

σ 2
+ 3

σ 3

}
e−2σ (A.14)

and using the definitions

En(x) =
∫ ∞

1

e−xt

tn
dt (A.15)

and the recurrence relation

En+1(x) = 1

n
e−x − x

n
En(x) (A.16)

we obtain

E2 = e−x − x E1(x) (A.17)

E3 = 1

2
(1 − x)e−x + x2

2
E1(x). (A.18)

Therefore,

I3 =
∫ ∞

α11r0

e
−

(
2 σ
α11

)
σ

{
1 + 4

σ
+ 6

σ 2
+ 3

σ 3

}
dσ (A.19)

= α11

(2α11 + 1)
e−(2α11+1)r0 + 4E1(r0(2α11 + 1))+ 6

(α11r0)
E2(r0(2α11 + 1))

+ 3

(α11r0)
E3(r0(2α11 + 1)) (A.20)

and

I4 = α11

(2α11 + 1)
e
−

(
2+ 1

α11

)
α11r0 + 2E1(r0(2α11 + 1))+ 6

(α11r0)
E2(r0(2α11 + 1)). (A.21)

By employing (A.17) and (A.18) we get

I3 = −
{[

α11

(2α11 + 1)
+ 2

α11r0
+ 3(1 − r0(2α11 + 1))

2(α11r0)2

]
e−((2α11+1))r0

+
[

4 − 6(2α11 + 1)

α11
+ 6(2α11 + 1)2

2α2
11

]
E1

}
(A.22)

I4 =
{

α11

(2α11 + 1)
+ 1

α11r0

}
e−(2α11+1)r0 +

{
2 − (2α11 + 1)

α11

}
E1. (A.23)
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Equations (38) and (39) can be reduced to

E (1)
2p = N2

2p

{
1

k2
11

∫ k11r0

0
e−ρ/k11 j0(ρ) j0(ρ)− 3

ρ
j1(ρ)ρ

2 dρ

− 1

α2
11

∣∣∣∣ j1(k11r0)

h(iα11r0)

∣∣∣∣
2 [(

α11

(2α11 + 1)
+ 6

(r0α11)

+ 3

2

(1 − (2α11 + 1)r0)

(r0α11)2

)
e−(2α11+1)r0

+
(

4 − 6(2α11 + 1)

α11
+ 3(2α11 + 1)2

2α2
11

)
E1

]}
(A.24)

where

N−2
2p = 1

k2
11

∫ k11r0

0
e−ρ/k11 j 2

1 (ρ)(ρ)
2 dρ + 1

α3
11

∣∣∣∣∣ j1(k11r0)

h(1)1 (iα11r0)

∣∣∣∣∣
2

×
[(

α11

(2α11 + 1)
+ 1

α11r0

)
e−(2α11+1)r0

+
(

2 − (2α11 + 1)

α11

)
E1

]
. (A.25)

The values of E1 are either taken from the tables for large argument, or by using equation (A.6).
As one notice that (A.24), (A.25) involve α11 and k11, which depends on V0 and E2p as given
in the text in addition to r0, i.e. solving the transcendental relation is a prerequisite to evaluate
the above integrals.
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